WOROI: 1 - Brain
 
Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
 
 
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
 
 
[ Brede Database ]
 


WOROI: 1 - Brain


External databases

MeSH UID: D001921
BrainInfo: 1

Taxonomy

ParentsSiblingsChildren
   Forebrain
Hindbrain
Midbrain
Brain stem
Corpus Callosum
Cerebrospinal fluid
White matter

Talairach coordinates

  x     y     z   Lobar anatomy WOBIB WOEXP
-6 -34 -25 Brain stem 31 108
-3 5 -5 Basal forebrain 32 109
-10 -3 -7 Left basal forebrain 39 132
3 -34 -28 Brain stem 39 133
8 -27 1 Midbrain 47 151
-4 -37 -18 Midbrain 47 151
-9 -25 -11 Midbrain 47 152
10 -32 -12 Brainstem 56 180
10 -32 -12 Brainstem 56 181
2 -24 0 Periaqueductal gray/midbrain 58 184
-6 -14 -16 Left midbrain 68 210
-6 -35 2 Brainstem/periventricular gray 79 248
-6 -26 -21 Brain stem (medial 82 258
6 -12 -9 Right midbrain 91 292
-4 -14 -3 Midbrain 93 294
-10 -16 -9 Midbrain 93 295
-3 -20 5 Bilaterally in the hypothalamus and the central grey of the midbrain 99 310
1 -35 -20 Dorsal midbrain 102 319
-4 -24 -14 Left brainstem 141 432
3 -2 -11 Brainstem 176 539
12 -10 -4 Midbrain 177 541
-10 -20 -4 Midbrain 177 541
10 -12 -4 Midbrain 177 542
10 -12 -4 Midbrain 177 544
-12 -14 -4 Midbrain 177 544
14 -10 -8 Midbrain 177 545
-6 -34 -4 Midbrain 177 547
14 -6 -4 Midbrain 177 548
-12 -10 -4 Midbrain 177 548
-3 -25 -2 Midbrain/periaqueductal grey 179 562

Summary

  x     y     z   Description
-7 -20 -8 Mean coordinate in left hemisphere
8 -19 -9 Mean coordinate in right hemisphere
7 -20 -8 Mean coordinate with ignored left/right
1 -37 -28 Minimum coordinate with ignored left/right
14 5 5 Maximum coordinate with ignored left/right
4 11 8 Standard deviation with ignored left/right
corner cube of WOROI: 1 - Brain

Text contexts

A number of extrastriate visual areas in the parieto-occipital cortex are known from single-cell recordings of the macaque monkey to be involved in the coding of eye-position signals in the brainIan Law; Claus Svarer; Egill Rostrup; Olaf B. Paulson. Parieto-occipital cortex activation during self-generated eye movements in the dark. Brain 121 ( Pt 11):2189-200, 1998. PMID: 9827777. WOBIB: 1.
Only for the group of male subjects was there evidence of a significant activation of the thalamus and hypothalamus, a sexually dimorphic area of the brain known to play a pivotal role in physiological arousal and sexual behaviorSherif Karama; Andre R. Lecours; Jean-Maxime Leroux; Pierre Bourgouin; Gilles Beaudoin; Sven Joubert; Mario Beauregard. Areas of brain activation in males and females during viewing of erotic film excerpts. Human Brain Mapping 16(1):1-13, 2002. PMID: 11870922. WOBIB: 4.
These findings reveal the existence of similarities and dissimilarities in the way the brain of both genders responds to erotic stimuliSherif Karama; Andre R. Lecours; Jean-Maxime Leroux; Pierre Bourgouin; Gilles Beaudoin; Sven Joubert; Mario Beauregard. Areas of brain activation in males and females during viewing of erotic film excerpts. Human Brain Mapping 16(1):1-13, 2002. PMID: 11870922. WOBIB: 4.
We hypothesize that brain regions representing object categories that rely on detailed central scrutiny (such as faces) are more strongly associated with processing of central information, compared to representations of objects that may be recognized by more peripheral information (such as buildings or scenes)I Levy; U Hasson; G Avidan; T Hendler; R Malach. Center-periphery organization of human object areas. Nature Neuroscience 4(5):533-9, 2001. PMID: 11319563. DOI: 10.1038/87490. WOBIB: 5.
Functional MRI (fMRI) was used to examine human brain activity within the dorsolateral prefrontal cortex during a sensorimotor task that had been proposed to require selection between several responses, a cognitive concept termed "willed action" in a positron emission tomography (PET) study by Frith et alF. Hyder; E. A. Phelps; C. J. Wiggins; K. S. Labar; A. M. Blamire; R. G. Shulman. "Willed action": a functional MRI study of the human prefrontal cortex during a sensorimotor task. Proc Natl Acad Sci U S A 94(13):6989-6994, 1997. PMID: 9192679. WOBIB: 6.
Multiple brain areas, including bilateral secondary somatosensory cortices (SII) and insula, and the frontal lobe and thalamus contralateral to the stimulus side, were found to be involved in the response to painful stimulationX. Xu; H. Fukuyama; S. Yazawa; T. Mima; T. Hanakawa; Y. Magata; M. Kanda; N. Fujiwara; K. Shindo; T. Nagamine; H. Shibasaki. Functional localization of pain perception in the human brain studied by PET. NeuroReport 8(2):555-559, 1997. PMID: 9080447. WOBIB: 13.
Brain activation was measured with 15O-PET, and significant changes in regional normalized counts (rNC) were evaluated using statistical parametric mapping (SPM96) softwareK. Hugdahl; Ian Law; S. Kyllingsbaek; K. Bronnick; Anders Gade; Olaf B. Paulson. Effects of attention on dichotic listening: an 15O-PET study. Human Brain Mapping 10(2):87-97, 2000. PMID: 10864233. WOBIB: 14.
Functional magnetic resonance imaging (fMRI) was used to examine changes in activation of posterior brain regions associated with the acquisition of mirror-reading skill for novel and practiced stimuliRussell A. Poldrack; John E. Desmond; Gary H. Glover; John D. E. Gabrieli. The neural basis of visual skill learning: an fMRI study of mirror reading. Cerebral Cortex 8(1):1-10, 1998. PMID: 9510380. WOBIB: 15.
To localize a central nervous feed-forward mechanism involved in cardiovascular regulation during exercise, brain activation patterns were measured in eight subjects by employing positron emission tomography and oxygen-15-labeled waterM. Nowak; K. S. Olsen; I. Law; Søren Holm; O. B. Paulson; N. H. Secher. Command-related distribution of regional cerebral blood flow during attempted handgrip. Journal of Applied Physiology 86(3):819-824, 1999. PMID: 10066691. WOBIB: 16.
Micturition versus rest was associated with bilateral activation of areas close to the postcentral gyrus, inferior frontal gyrus, globus pallidus, cortex cerebelli, vermis and midbrainS. Nour; Claus Svarer; J. K. Kristensen; O. B. Paulson; I. Law. Cerebral activation during micturition in normal men. Brain 123 ( Pt 4):781-9, 2000. PMID: 10734009. WOBIB: 17.
For example we did not find any activation in brain areas known to be involved in lexical or verbal processing nor activations in cortical regions known to be involved in object identification or classificationK. Jordan; H. J. Heinze; K. Lutz; M. Kanowski; L. Jancke. Cortical activations during the mental rotation of different visual objects. NeuroImage 13(1):143-52, 2001. PMID: 11133317. DOI: 10.1006/nimg.2000.0677. WOBIB: 25.
Medial temporal brain regions such as the hippocampal formation and parahippocampal cortex have been generally implicated in navigation and visual memoryR. Epstein; N. Kanwisher. A cortical representation of the local visual environment. Nature 392(6676):598-601, 1998. PMID: 9560155. DOI: 10.1038/33402. WOBIB: 27.
To identify the brain structures implicated in mental transformation of size, we measured the distribution of regional cerebral blood flow (rCBF) by positron emission tomography (PET) in 12 normal subjects who compared random stimulus patterns with respect to shape regardless of variations in size in a one-back match-to-sample paradigmA. Larsen; C. Bundesen; S. Kyllingsbaek; O. B. Paulson; I. Law. Brain activation during mental transformation of size. Journal of Cognitive Neuroscience 12(5):763-74, 2000. PMID: 11054919. WOBIB: 30.
The detected brain structures implicated in mental transformation of size were primarily located in the dorsal pathways, comprising structures in the occipital, parietal, and temporal transition zone (predominantly in the left hemisphere), posterior parietal cortex (bilaterally), area MT/V5 (left), and vermis (bilaterally)A. Larsen; C. Bundesen; S. Kyllingsbaek; O. B. Paulson; I. Law. Brain activation during mental transformation of size. Journal of Cognitive Neuroscience 12(5):763-74, 2000. PMID: 11054919. WOBIB: 30.
Human lesion data indicate that the basal forebrain or orbitofrontal cortex, or both, as well as medial temporal and diencephalic structures, is important for normal memory and that its disruption causes the pure amnesic syndrome, in which episodic memory is grossly impaired while other kinds of memory remain preservedToshikatsu Fujii; Jiro Okuda; Takashi Tsukiura; Hiroya Ohtake; Rina Miura; Reiko Fukatsu; Kyoko Suzuki; Ryuta Kawashima; Masatoshi Itoh; Hiroshi Fukuda; Atsushi Yamadori. The role of the basal forebrain in episodic memory retrieval: a positron emission tomography study. NeuroImage 15(3):501-8, 2002. PMID: 11848693. DOI: 10.1006/nimg.2001.0995. WOBIB: 32.
Among these critical areas, functional imaging studies have so far failed to detect activation of the basal forebrain, although activation in the nearby orbitofrontal cortex has been reported during episodic memory retrievalToshikatsu Fujii; Jiro Okuda; Takashi Tsukiura; Hiroya Ohtake; Rina Miura; Reiko Fukatsu; Kyoko Suzuki; Ryuta Kawashima; Masatoshi Itoh; Hiroshi Fukuda; Atsushi Yamadori. The role of the basal forebrain in episodic memory retrieval: a positron emission tomography study. NeuroImage 15(3):501-8, 2002. PMID: 11848693. DOI: 10.1006/nimg.2001.0995. WOBIB: 32.
We employed positron emission tomography to elucidate the neural basis of episodic memory recall utilizing two types of time cues and successfully detected activity in the basal forebrain for the first timeToshikatsu Fujii; Jiro Okuda; Takashi Tsukiura; Hiroya Ohtake; Rina Miura; Reiko Fukatsu; Kyoko Suzuki; Ryuta Kawashima; Masatoshi Itoh; Hiroshi Fukuda; Atsushi Yamadori. The role of the basal forebrain in episodic memory retrieval: a positron emission tomography study. NeuroImage 15(3):501-8, 2002. PMID: 11848693. DOI: 10.1006/nimg.2001.0995. WOBIB: 32.
Specifically, recall of previously memorized words from temporal cues was associated with activity in the basal forebrain, right middle frontal gyrus, right superior temporal gyrus, and posterior cingulate gyrus, whereas their recall from person cues was associated with activity in the left insula, right middle frontal gyrus, and posterior cingulate gyrusToshikatsu Fujii; Jiro Okuda; Takashi Tsukiura; Hiroya Ohtake; Rina Miura; Reiko Fukatsu; Kyoko Suzuki; Ryuta Kawashima; Masatoshi Itoh; Hiroshi Fukuda; Atsushi Yamadori. The role of the basal forebrain in episodic memory retrieval: a positron emission tomography study. NeuroImage 15(3):501-8, 2002. PMID: 11848693. DOI: 10.1006/nimg.2001.0995. WOBIB: 32.
Furthermore, percentage increases of regional blood flow in the basal forebrain were correlated with behavioral data of successful recallToshikatsu Fujii; Jiro Okuda; Takashi Tsukiura; Hiroya Ohtake; Rina Miura; Reiko Fukatsu; Kyoko Suzuki; Ryuta Kawashima; Masatoshi Itoh; Hiroshi Fukuda; Atsushi Yamadori. The role of the basal forebrain in episodic memory retrieval: a positron emission tomography study. NeuroImage 15(3):501-8, 2002. PMID: 11848693. DOI: 10.1006/nimg.2001.0995. WOBIB: 32.
Our results provide clear evidence that the human basal forebrain has a specific role in episodic memory recall, especially that from time-contextual informationToshikatsu Fujii; Jiro Okuda; Takashi Tsukiura; Hiroya Ohtake; Rina Miura; Reiko Fukatsu; Kyoko Suzuki; Ryuta Kawashima; Masatoshi Itoh; Hiroshi Fukuda; Atsushi Yamadori. The role of the basal forebrain in episodic memory retrieval: a positron emission tomography study. NeuroImage 15(3):501-8, 2002. PMID: 11848693. DOI: 10.1006/nimg.2001.0995. WOBIB: 32.
We isolated brain areas activated during the viewing of point-light figures, then compared those areas to regions known to be involved in coherent-motion perception and kinetic-boundary perceptionE. Grossman; M. Donnelly; R. Price; D. Pickens; V. Morgan; G. Neighbor; R. Blake. Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience 12(5):711-20, 2000. PMID: 11054914. WOBIB: 33.
The neural basis of navigation by humans was investigated with functional neuroimaging of brain activity during navigation in a familiar, yet complex virtual reality townE. A. Maguire; N. Burgess; J. G. Donnett; Richard S. J. Frackowiak; C. D. Frith; J. O'Keefe. Knowing where and getting there: a human navigation network. Science 280(5365):921-4, 1998. PMID: 9572740. WOBIB: 38.
These two right-side brain structures function in the context of associated activity in right inferior parietal and bilateral medial parietal regions that support egocentric movement through the virtual town, and activity in other left-side regions (hippocampus, frontal cortex) probably involved in nonspatial aspects of navigationE. A. Maguire; N. Burgess; J. G. Donnett; Richard S. J. Frackowiak; C. D. Frith; J. O'Keefe. Knowing where and getting there: a human navigation network. Science 280(5365):921-4, 1998. PMID: 9572740. WOBIB: 38.
These findings outline a network of brain areas that support navigation in humans and link the functions of these regions to physiological observations in other mammalsE. A. Maguire; N. Burgess; J. G. Donnett; Richard S. J. Frackowiak; C. D. Frith; J. O'Keefe. Knowing where and getting there: a human navigation network. Science 280(5365):921-4, 1998. PMID: 9572740. WOBIB: 38.
We measured brain activity using functional magnetic resonance imaging (fMRI) during performance of the flanker taskE. Hazeltine; Russell Poldrack; John D. E. Gabrieli. Neural activation during response competition. Journal of Cognitive Neuroscience 12(Supplement 2):118-29, 2000. PMID: 11506652. DOI: 10.1162/089892900563984. FMRIDCID: 2-2000-11173. WOBIB: 40.
In this study we used functional magnetic resonance imaging (fMRI) of the entire brain to determine the patterns of activation that occurred while subjects performed a visually guided motor taskJ. M. Ellermann; J. D. Siegal; J. P. Strupp; T. J. Ebner; K. Ugurbil. Activation of visuomotor systems during visually guided movements: a functional MRI study. Journal of Magnetic Resonance 131(2):272-85, 1998. PMID: 9571103. WOBIB: 45.
Subsequently, each subject's brain was normalized to Talairach coordinates, and the individual maps were compared on a pixel by pixel basisJ. M. Ellermann; J. D. Siegal; J. P. Strupp; T. J. Ebner; K. Ugurbil. Activation of visuomotor systems during visually guided movements: a functional MRI study. Journal of Magnetic Resonance 131(2):272-85, 1998. PMID: 9571103. WOBIB: 45.
Deduction activated areas near right brain homologues of left language areas in middle temporal lobe, inferior frontal cortex and basal ganglia, as well as right amygdala, but not spatial-visual areasL. M. Parsons; D. Osherson. New Evidence for Distinct Right and Left Brain Systems for Deductive versus Probabilistic Reasoning. Cerebral Cortex 11(10):954-65, 2001. PMID: 11549618. WOBIB: 47.
Using positron emission tomography and H(2)(15)O, we aimed to identify brain regions that change their neural activity in association with changes in neural processing of visual and/or somatosensory information when humans use a simple toolK. Inoue; R. Kawashima; Motoaki Sugiura; A. Ogawa; T. Schormann; Karl Zilles; Hiroshi Fukuda. Activation in the ipsilateral posterior parietal cortex during tool use: a PET study. NeuroImage 14(6):1469-75, 2001. PMID: 11707103. DOI: 10.1006/nimg.2001.0942. WOBIB: 48.
PET was used to map brain regions that are associated with the observation of meaningful and meaningless hand actionsJean Decety; J. Grezes; N. Costes; Daniela Perani; Marc Jeannerod; E. Procyk; F. Grassi; F. Fazio. Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120 ( Pt 10):1763-77, 1997. PMID: 9365369. WOBIB: 49.
We found that differences in the meaning of the action, irrespective of the strategy used during observation, lead to different patterns of brain activity and clear left/right asymmetriesJean Decety; J. Grezes; N. Costes; Daniela Perani; Marc Jeannerod; E. Procyk; F. Grassi; F. Fazio. Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120 ( Pt 10):1763-77, 1997. PMID: 9365369. WOBIB: 49.
Thus, the pattern of brain activation during observation of actions is dependent both on the nature of the required executive processing and the type of the extrinsic properties of the action presentedJean Decety; J. Grezes; N. Costes; Daniela Perani; Marc Jeannerod; E. Procyk; F. Grassi; F. Fazio. Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120 ( Pt 10):1763-77, 1997. PMID: 9365369. WOBIB: 49.
Localized, task-induced decreases in cerebral blood flow are a frequent finding in functional brain imaging research but remain poorly understoodJ. R. Binder; J. A. Frost; T. A. Hammeke; P. S. Bellgowan; S. M. Rao; R. W. Cox. Conceptual processing during the conscious resting state. A functional MRI study. Journal of Cognitive Neuroscience 11(1):80-95, 1999. PMID: 9950716. WOBIB: 50.
Furthermore, comparisons between conceptual and nonconceptual tasks should show activation during conceptual tasks of the same brain areas that are 'deactivated' relative to restJ. R. Binder; J. A. Frost; T. A. Hammeke; P. S. Bellgowan; S. M. Rao; R. W. Cox. Conceptual processing during the conscious resting state. A functional MRI study. Journal of Cognitive Neuroscience 11(1):80-95, 1999. PMID: 9950716. WOBIB: 50.
This result is consistent with the proposal that perceptual tasks interrupt processes ongoing during rest that involve many of the same brain areas engaged during semantic retrievalJ. R. Binder; J. A. Frost; T. A. Hammeke; P. S. Bellgowan; S. M. Rao; R. W. Cox. Conceptual processing during the conscious resting state. A functional MRI study. Journal of Cognitive Neuroscience 11(1):80-95, 1999. PMID: 9950716. WOBIB: 50.
As further evidence for this model, the same network of brain areas was activated in two direct comparisons between semantic and perceptual processing tasksJ. R. Binder; J. A. Frost; T. A. Hammeke; P. S. Bellgowan; S. M. Rao; R. W. Cox. Conceptual processing during the conscious resting state. A functional MRI study. Journal of Cognitive Neuroscience 11(1):80-95, 1999. PMID: 9950716. WOBIB: 50.
In general, the current findings confirm the distinction between maintenance and manipulative processes, highlight the functional heterogeneity in the prefrontal cortex (PFC), and suggest a more dynamic view of WM as a process requiring the coordinated interaction of anatomically distinct brain areasL. Cornette; P. Dupont; E. Salmon; G. A. Orban. The neural substrate of orientation working memory. Journal of Cognitive Neuroscience 13(6):813-28, 2001. PMID: 11564325. DOI: 10.1162/08989290152541476. WOBIB: 51.
This work investigates whether the brain assigns special cortical areas for the processing of kinetic contoursSemir Zeki; R. J. Perry; A. Bartels. The processing of kinetic contours in the brain. Cerebral Cortex 13(2):189-202, 2003. PMID: 12507950. WOBIB: 52.
In human imaging experiments, we compared the brain activity produced in the so-called 'kinetic occipital' area ('KO') when humans perceive shapes generated from kinetic boundaries or from equiluminant colorsSemir Zeki; R. J. Perry; A. Bartels. The processing of kinetic contours in the brain. Cerebral Cortex 13(2):189-202, 2003. PMID: 12507950. WOBIB: 52.
We conclude that there is no present evidence for a visual area specialized for the processing of kinetic contours in the primate visual brainSemir Zeki; R. J. Perry; A. Bartels. The processing of kinetic contours in the brain. Cerebral Cortex 13(2):189-202, 2003. PMID: 12507950. WOBIB: 52.
The activity in the brains of 17 subjects who were deeply in love was scanned using fMRI, while they viewed pictures of their partners, and compared with the activity produced by viewing pictures of three friends of similar age, sex and duration of friendship as their partnersAndreas Bartels; Semir Zeki. The neural basis of romantic love. NeuroReport 11(17):3829-3834, 2000. PMID: 11117499. WOBIB: 54.
Defining a baseline state in the human brain, arguably our most complex system, poses a particular challengeMarcus E. Raichle; A. M. MacLeod; A. Z. Snyder; W. J. Powers; D. A. Gusnard; Gordon L. Shulman. A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676-82, 2001. PMID: 11209064. DOI: 10.1073/pnas.98.2.676. WOBIB: 55.
Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEFMarcus E. Raichle; A. M. MacLeod; A. Z. Snyder; W. J. Powers; D. A. Gusnard; Gordon L. Shulman. A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676-82, 2001. PMID: 11209064. DOI: 10.1073/pnas.98.2.676. WOBIB: 55.
The OEF is defined as the ratio of oxygen used by the brain to oxygen delivered by flowing blood and is remarkably uniform in the awake but resting state (eMarcus E. Raichle; A. M. MacLeod; A. Z. Snyder; W. J. Powers; D. A. Gusnard; Gordon L. Shulman. A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676-82, 2001. PMID: 11209064. DOI: 10.1073/pnas.98.2.676. WOBIB: 55.
We used quantitative metabolic and circulatory measurements from positron-emission tomography to obtain the OEF regionally throughout the brainMarcus E. Raichle; A. M. MacLeod; A. Z. Snyder; W. J. Powers; D. A. Gusnard; Gordon L. Shulman. A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676-82, 2001. PMID: 11209064. DOI: 10.1073/pnas.98.2.676. WOBIB: 55.
These decreases suggest the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviorsMarcus E. Raichle; A. M. MacLeod; A. Z. Snyder; W. J. Powers; D. A. Gusnard; Gordon L. Shulman. A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676-82, 2001. PMID: 11209064. DOI: 10.1073/pnas.98.2.676. WOBIB: 55.
We used functional magnetic resonance imaging (fMRI) to determine whether similar brain regions activate during noxious hot and cold stimulationI. Tracey; L. Becerra; I. Chang; H. Breiter; L. Jenkins; D. Borsook; R. G. Gonzalez. Noxious hot and cold stimulation produce common patterns of brain activation in humans: a functional magnetic resonance imaging study. Neuroscience Letters 288(2):159-62, 2000. PMID: 10876085. WOBIB: 57.
Six male subjects underwent whole brain fMRI during phasic delivery of noxious hot (46 degrees C) and noxious cold (5 degrees C) stimulation to the dorsum of the left handI. Tracey; L. Becerra; I. Chang; H. Breiter; L. Jenkins; D. Borsook; R. G. Gonzalez. Noxious hot and cold stimulation produce common patterns of brain activation in humans: a functional magnetic resonance imaging study. Neuroscience Letters 288(2):159-62, 2000. PMID: 10876085. WOBIB: 57.
It has previously been suggested that the activity in sensory regions of the brain can be modulated by attentional mechanisms during parallel cognitive processingP. Petrovic; K. M. Petersson; P. H. Ghatan; S. Stone-Elander; M. Ingvar. Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85(1-2):19-30, 2000. PMID: 10692599. WOBIB: 58.
The activity in the somatosensory association areas and periaqueductal gray/midbrain were significantly modified, iP. Petrovic; K. M. Petersson; P. H. Ghatan; S. Stone-Elander; M. Ingvar. Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85(1-2):19-30, 2000. PMID: 10692599. WOBIB: 58.
Our current understanding of spatial behaviour and parietal lobe function is largely based on the belief that spatial neglect in humans (a lack of awareness of space on the side of the body contralateral to a brain injury) is typically associated with lesions of the posterior parietal lobeHans-Otto Karnath; S. Ferber; M. Himmelbach. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411(6840):950-3, 2001. PMID: 11418859. DOI: 10.1038/35082075. WOBIB: 59.
Unlike the monkey brain, spatial awareness in humans is a function largely confined to the right superior temporal cortex, a location topographically reminiscent of that for language on the leftHans-Otto Karnath; S. Ferber; M. Himmelbach. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411(6840):950-3, 2001. PMID: 11418859. DOI: 10.1038/35082075. WOBIB: 59.
Hence, the decisive phylogenetic transition from monkey to human brain seems to be a restriction of a formerly bilateral function to the right side, rather than a shift from the temporal to the parietal lobeHans-Otto Karnath; S. Ferber; M. Himmelbach. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411(6840):950-3, 2001. PMID: 11418859. DOI: 10.1038/35082075. WOBIB: 59.
Brain activity was studied by fMRI in 18 healthy subjects during stimulation of the thenar eminence of the hand with either warm (non-painful, 40 degrees C) or hot (painful, 46-49 degrees C) stimuli using a contact thermodeJonathan C. W. Brooks; Turo J. Nurmikko; William E. Bimson; Krish D. Singh; Neil Roberts. fMRI of thermal pain: effects of stimulus laterality and attention. NeuroImage 15(2):293-301, 2002. PMID: 11798266. DOI: 10.1006/nimg.2001.0974. WOBIB: 60.
Painful thermal stimulation of either hand elicited significant activity over a large network of brain regions, including insula, inferior frontal gyrus, cingulate gyrus, secondary somatosensory cortex, cerebellum, and medial frontal gyrus (corrected P < 0Jonathan C. W. Brooks; Turo J. Nurmikko; William E. Bimson; Krish D. Singh; Neil Roberts. fMRI of thermal pain: effects of stimulus laterality and attention. NeuroImage 15(2):293-301, 2002. PMID: 11798266. DOI: 10.1006/nimg.2001.0974. WOBIB: 60.
The CV of the entire cortex was found to be significantly larger in AD, suggesting increased heterogeneity at the whole brain levelNora D. Volkow; Wei Zhu; Christoph A. Felder; Klaus Mueller; Tomihisa F. Welsh; Gene J. Wang; Mony J. de Leon. Changes in brain functional homogeneity in subjects with Alzheimer's disease. Psychiatry Research 114(1):39-50, 2002. PMID: 11864808. WOBIB: 61.
The enhanced heterogeneity for the global cortical pattern most likely reflects variability in the degree of pathology among brain regions as well as neuroanatomical disconnectionNora D. Volkow; Wei Zhu; Christoph A. Felder; Klaus Mueller; Tomihisa F. Welsh; Gene J. Wang; Mony J. de Leon. Changes in brain functional homogeneity in subjects with Alzheimer's disease. Psychiatry Research 114(1):39-50, 2002. PMID: 11864808. WOBIB: 61.
Structural MRIs of the brains of humans with extensive navigation experience, licensed London taxi drivers, were analyzed and compared with those of control subjects who did not drive taxisE. A. Maguire; D. G. Gadian; I. S. Johnsrude; C. D. Good; J. Ashburner; Richard S. J. Frackowiak; C. D. Frith. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97(8):4398-403, 2000. PMID: 10716738. DOI: 10.1073/pnas.070039597. WOBIB: 63.
It seems that there is a capacity for local plastic change in the structure of the healthy adult human brain in response to environmental demandsE. A. Maguire; D. G. Gadian; I. S. Johnsrude; C. D. Good; J. Ashburner; Richard S. J. Frackowiak; C. D. Frith. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97(8):4398-403, 2000. PMID: 10716738. DOI: 10.1073/pnas.070039597. WOBIB: 63.
The purpose of this study was to identify brain regions underlying internally generated anticipatory biases toward locations where significant events are expected to occurD. M. Small; D. R. Gitelman; M. D. Gregory; A. C. Nobre; T. B. Parrish; M-M Mesulam. The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. NeuroImage 18(3):633-41, 2003. PMID: 12667840. WOBIB: 65.
In order to localize this unmasking in the human brain, we have used positron emission tomography (PET) to compare the cortical activation patterns evoked by the thermal grill and by cool, warm, noxious cold and noxious heat stimuliA. D. Craig; Eric M. Reiman; A. Evans; M. C. Bushnell. Functional imaging of an illusion of pain. Nature 384(6606):258-60, 1996. PMID: 8918874. WOBIB: 69.
In order to identify brain activity specifically associated with adoption of an intentional stance, we used a paradigm that allowed tight control of other cognitive demandsHelen L. Gallagher; Anthony I. Jack; Andreas Roepstorff; Christopher D. Frith. Imaging the intentional stance in a competitive game. NeuroImage 16(3 Pt 1):814-21, 2002. PMID: 12169265. WOBIB: 70.
However, this is the first study suggesting a specific link between activity in this brain region and the adoption of an intentional stanceHelen L. Gallagher; Anthony I. Jack; Andreas Roepstorff; Christopher D. Frith. Imaging the intentional stance in a competitive game. NeuroImage 16(3 Pt 1):814-21, 2002. PMID: 12169265. WOBIB: 70.
It has been argued that the role of the hippocampus in memory is time-limited: during a period of memory consolidation, other brain regions such as the neocortex are said to acquire the ability to support memory retention and retrieval on their ownL. Ryan; L. Nadel; K. Keil; K. Putnam; D. Schnyer; T. Trouard; M. Moscovitch. Hippocampal complex and retrieval of recent and very remote autobiographical memories: evidence from functional magnetic resonance imaging in neurologically intact people. Hippocampus 11(6):707-14, 2001. PMID: 11811665. WOBIB: 73.
Conjunction analysis revealed a network of brain areas jointly activated during conscious REST as compared to the nine cognitive tasks, including the bilateral angular gyrus, the left anterior precuneus and posterior cingulate cortex, the left medial frontal and anterior cingulate cortex, the left superior and medial frontal sulcus, and the left inferior frontal cortexB. Mazoyer; L. Zago; E. Mellet; S. Bricogne; O. Etard; O. Houde; F. Crivello; M. Joliot; L. Petit; N. Tzourio-Mazoyer. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin 54(3):287-298, 2001. PMID: 11287133. WOBIB: 74.
These results suggest that brain activity during conscious REST is sustained by a large scale network of heteromodal associative parietal and frontal cortical areas, that can be further hierarchically organized in an episodic working memory parieto-frontal network, driven in part by emotions, working under the supervision of an executive left prefrontal networkB. Mazoyer; L. Zago; E. Mellet; S. Bricogne; O. Etard; O. Houde; F. Crivello; M. Joliot; L. Petit; N. Tzourio-Mazoyer. Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin 54(3):287-298, 2001. PMID: 11287133. WOBIB: 74.
Cortical activity due to a thermal painful stimulus applied to the right hand was studied in the middle third of the contralateral brain and compared to activations for vibrotactile and motor tasks using the same body part, in nine normal subjectsP. A. Gelnar; B. R. Krauss; P. R. Sheehe; N. M. Szeverenyi; A. V. Apkarian. A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. NeuroImage 10(4):460-82, 1999. PMID: 10493903. DOI: 10.1006/nimg.1999.0482. WOBIB: 75.
The study indicates that fMRI enables examination of cortical networks subserving pain perception at an anatomical detail not available with other brain imaging techniques and shows that this cortical network underlying pain perception shares components with the networks underlying touch perception and motor executionP. A. Gelnar; B. R. Krauss; P. R. Sheehe; N. M. Szeverenyi; A. V. Apkarian. A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks. NeuroImage 10(4):460-82, 1999. PMID: 10493903. DOI: 10.1006/nimg.1999.0482. WOBIB: 75.
In this study, we used positron emission tomography in 11 healthy volunteers to identify the brain areas in which hypnosis modulates cerebral responses to a noxious stimulusM. E. Faymonville; S. Laureys; C. Degueldre; G. DelFiore; A. Luxen; G. Franck; M. Lamy; P. Maquet. Neural mechanisms of antinociceptive effects of hypnosis. Anesthesiology 92(5):1257-67, 2000. PMID: 10781270. WOBIB: 76.
, brain areas that would be more or less activated in hypnosis than in control conditions, under noxious stimulation)M. E. Faymonville; S. Laureys; C. Degueldre; G. DelFiore; A. Luxen; G. Franck; M. Lamy; P. Maquet. Neural mechanisms of antinociceptive effects of hypnosis. Anesthesiology 92(5):1257-67, 2000. PMID: 10781270. WOBIB: 76.
Cortically, brain blood flow decreased in the social phobics and increased in the comparison subjects more during public than private speaking in the orbitofrontal and insular cortices as well as in the temporal pole and increased less in the social phobics than in the comparison group in the parietal and secondary visual corticesM. Tillfors; T. Furmark; I. Marteinsdottir; Håkan Fischer; A. Pissiota; B. Langstrom; M. Fredrikson. Cerebral blood flow in subjects with social phobia during stressful speaking tasks: a PET study. American Journal of Psychiatry 158(8):1220-6, 2001. PMID: 11481154. WOBIB: 77.
Functional neuroimaging is uniquely placed to examine the dynamic nature of normal human memory, the distributed brain networks that support it, and how they are modulatedE. A. Maguire; C. J. Mummery. Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus 9(1):54-61, 1999. PMID: 10088900. WOBIB: 78.
Recollection of each of the resultant four memory subtypes-autobiographical events, public events, autobiographical facts, and general knowledge-was associated with activation of a common network of brain regionsE. A. Maguire; C. J. Mummery. Differential modulation of a common memory retrieval network revealed by positron emission tomography. Hippocampus 9(1):54-61, 1999. PMID: 10088900. WOBIB: 78.
Brain imaging with positron emission tomography has identified some of the principal cerebral structures of a central network activated by painT. R. Tolle; T. Kaufmann; T. Siessmeier; S. Lautenbacher; A. Berthele; F. Munz; W. Zieglgansberger; F. Willoch; M. Schwaiger; B. Conrad; P. Bartenstein. Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Annals of Neurology 45(1):40-47, 1999. PMID: 9894875. WOBIB: 79.
The results of our activation study indicate that different functions in pain processing can be attributed to different brain regions; ie, the gating function reflected by the pain threshold appeared to be related to anterior cingulate cortex, the frontal inferior cortex, and the thalamus, the coding of pain intensity to the periventricular gray as well as to the posterior cingulate cortex, and the encoding of pain unpleasantness to the posterior sector of the anterior cingulate cortexT. R. Tolle; T. Kaufmann; T. Siessmeier; S. Lautenbacher; A. Berthele; F. Munz; W. Zieglgansberger; F. Willoch; M. Schwaiger; B. Conrad; P. Bartenstein. Region-specific encoding of sensory and affective components of pain in the human brain: a positron emission tomography correlation analysis. Annals of Neurology 45(1):40-47, 1999. PMID: 9894875. WOBIB: 79.
We used event-related functional magnetic resonance imaging (efMRI) to investigate brain regions showing differential responses as a function of confidence in an episodic word recognition taskR. N. Henson; Michael D. Rugg; T. Shallice; R. J. Dolan. Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. Journal of Cognitive Neuroscience 12(6):913-23, 2000. PMID: 11177413. WOBIB: 80.
Using H2 15O PET, we studied brain responses to such predictable sensory events (tones) and to similar unpredictable events and especially how the processing of predictable sensory events is modified by the context of a causative self-generated actionS. J. Blakemore; G. Rees; C. D. Frith. How do we predict the consequences of our actions? A functional imaging study. Neuropsychologia 36(6):521-9, 1998. PMID: 9705062. WOBIB: 82.
A commonality of other regions observed in this pair of studies, as well as other studies of memory in the literature, suggests that the human brain may contain a distributed multinodal general memory systemNancy C. Andreasen; D. S. O'Leary; T. Cizadlo; Stephan Arndt; K. Rezai; G. L. Watkins; L. L. Ponto; R. D. Hichwa. II. PET studies of memory: novel versus practiced free recall of word lists. NeuroImage 2(4):296-305, 1995. PMID: 9343614. WOBIB: 85.
OBJECTIVES: To assess the suitability of analyzing functional images of brain serotonin (5-HT) synthesis with statistical parametric mapping (SPM), and to investigate further possible sex-related regional differencesH. Okazawa; M. Leyton; C. Benkelfat; S. Mzengeza; M. Diksic. Statistical mapping analysis of serotonin synthesis images generated in healthy volunteers using positron-emission tomography and alpha-[11C]methyl-L-tryptophan. Journal of Psychiatry Neuroscience 25(4):359-370, 2000. PMID: 11022401. WOBIB: 89.
INTERVENTION: Participants' brains were scanned with positron-emission tomography (PET) after intravenous injection of alpha-[11C]methyl-L-tryptophan (alpha-[11C]MTrp)H. Okazawa; M. Leyton; C. Benkelfat; S. Mzengeza; M. Diksic. Statistical mapping analysis of serotonin synthesis images generated in healthy volunteers using positron-emission tomography and alpha-[11C]methyl-L-tryptophan. Journal of Psychiatry Neuroscience 25(4):359-370, 2000. PMID: 11022401. WOBIB: 89.
CONCLUSION: SPM analyses of PET alpha-[11C]MTrp data may be of value for identifying regional differences in brain 5-HT synthesis between groups, and in investigating the effects of psychotropic drugsH. Okazawa; M. Leyton; C. Benkelfat; S. Mzengeza; M. Diksic. Statistical mapping analysis of serotonin synthesis images generated in healthy volunteers using positron-emission tomography and alpha-[11C]methyl-L-tryptophan. Journal of Psychiatry Neuroscience 25(4):359-370, 2000. PMID: 11022401. WOBIB: 89.
Neuroimaging studies of natural memories may reveal distinctive patterns of brain activation and may have particular value in assessing clinical disorders of memoryR. J. Maddock; A. S. Garrett; Michael H. Buonocore. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 104(3):667-76, 2001. PMID: 11440800. WOBIB: 90.
This study used functional magnetic resonance imaging to investigate brain activation during successful retrieval of autobiographical memories elicited by name-cued recall of family members and friendsR. J. Maddock; A. S. Garrett; Michael H. Buonocore. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 104(3):667-76, 2001. PMID: 11440800. WOBIB: 90.
In addition, the available studies have not used recently developed brain mapping algorithms to characterize the progression of Alzheimer's disease throughout the brain, and none considered the statistical power of regional cerebral glucose metabolism in testing the ability of treatments to attenuate the progression of dementiaGene E. Alexander; Kewei Chen; Pietro Pietrini; Stanley I. Rapoport; Eric M. Reiman. Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer's Disease Treatment Studies. American Journal of Psychiatry 159(5):738-45, 2002. PMID: 11986126. WOBIB: 91.
METHOD: The authors used FDG PET and a brain mapping algorithm to investigate cross-sectional reductions in regional cerebral glucose metabolism, longitudinal decline in regional cerebral glucose metabolism after a 1-year follow-up, and the power of this method to evaluate treatments for Alzheimer's disease in patients with mild to moderate dementiaGene E. Alexander; Kewei Chen; Pietro Pietrini; Stanley I. Rapoport; Eric M. Reiman. Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer's Disease Treatment Studies. American Journal of Psychiatry 159(5):738-45, 2002. PMID: 11986126. WOBIB: 91.
CONCLUSIONS: These findings indicate that brain metabolism as assessed by FDG PET during mental rest is a sensitive marker of disease progression in Alzheimer's disease over a 1-year periodGene E. Alexander; Kewei Chen; Pietro Pietrini; Stanley I. Rapoport; Eric M. Reiman. Longitudinal PET Evaluation of Cerebral Metabolic Decline in Dementia: A Potential Outcome Measure in Alzheimer's Disease Treatment Studies. American Journal of Psychiatry 159(5):738-45, 2002. PMID: 11986126. WOBIB: 91.
The results show that the positron emission tomography and (18)F-fluoro-deoxyglucose ((18)FDG-PET) brain mapping results could be partially reproduced, and suggest that PET brain mapping of cancer patients has a potential clinical application to the field of psycho-oncology and cancer patient careM. Tashiro; F. D. Juengling; M. J. Reinhardt; I. Brink; S. Hoegerle; M. Mix; K. Kubota; K. Yamaguchi; M. Itoh; H. Sasaki; E. Moser; E. U. Nitzsche. Reproducibility of PET brain mapping of cancer patients. Psychooncology 9(2):157-63, 2000. PMID: 10767753. WOBIB: 92.
Pleasant and unpleasant emotions were each distinguished from neutral emotion conditions by significantly increased cerebral blood flow in the vicinity of the medial prefrontal cortex (Brodmann's area 9), thalamus, hypothalamus and midbrain (P < 0Richard D. Lane; Eric M. Reiman; M. M. Bradley; P. J. Lang; Geoffrey L. Ahern; Richard J. Davidson; Gary E. Schwartz. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia 35(11):1437-44, 1997. PMID: 9352521. BrainMap: 276. WOBIB: 93.
To learn about the sequence of brain activation patterns during heat pain, we acquired positron emission tomographic (PET) brain scans at different times during repetitive heat stimulation (40 or 50 degrees C; 5-s contact) of each subject's left forearmK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
These psychophysical changes could be mediated by brain structures with increasing activity from early to late PET scans or that are active only during late scansK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
Overall, the results reveal that 1) the pattern of brain activation and the perception of heat pain both change during repetitive noxious heat stimulation, 2) cortical activity can be detected before subcortical responses appear, and 3) timing the stimulation with respect to the scan period can, together with psychophysical measurements, identify brain structures that are likely to participate in the perception of painK. L. Casey; T. J. Morrow; J. Lorenz; S. Minoshima. Temporal and spatial dynamics of human forebrain activity during heat pain: analysis by positron emission tomography. Journal of Neurophysiology 85(2):951-9, 2001. PMID: 11160525. WOBIB: 95.
Here we use positron emission tomography and statistical parametric mapping to study the brain state associated with REM sleep in humansP. Maquet; J. Peters; J. Aerts; G. Delfiore; C. Degueldre; A. Luxen; G. Franck. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596):163-6, 1996. PMID: 8774879. WOBIB: 96.
We report a group study of seven subjects who maintained steady REM sleep during brain scanning and recalled dreams upon awakeningP. Maquet; J. Peters; J. Aerts; G. Delfiore; C. Degueldre; A. Luxen; G. Franck. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383(6596):163-6, 1996. PMID: 8774879. WOBIB: 96.
We detected signal increase in the right middle temporal gyrus and left prefrontal cortex during presentation of familiar faces, and in several brain regions, including bilateral posterior cingulate gyri, bilateral insulae and right middle occipital cortex during presentation of unfamiliar facesMary L. Phillips; E. T. Bullmore; R. Howard; P. W. Woodruff; I. C. Wright; Steven C. R. Williams; A. Simmons; C. Andrew; M. Brammer; Anthony S. David. Investigation of facial recognition memory and happy and sad facial expression perception: an fMRI study. Psychiatry Research 83(3):127-38, 1998. PMID: 9849722. WOBIB: 98.
During presentation of happy facial expressions, we detected a signal increase predominantly in the left anterior cingulate gyrus, bilateral posterior cingulate gyri, medial frontal cortex and right supramarginal gyrus, brain regions previously implicated in visuospatial and emotion processing tasksMary L. Phillips; E. T. Bullmore; R. Howard; P. W. Woodruff; I. C. Wright; Steven C. R. Williams; A. Simmons; C. Andrew; M. Brammer; Anthony S. David. Investigation of facial recognition memory and happy and sad facial expression perception: an fMRI study. Psychiatry Research 83(3):127-38, 1998. PMID: 9849722. WOBIB: 98.
Subcortically, conditioning increased rCBF bilaterally in the ventromedial thalamus, the posterior hypothalamus and the central grey of the midbrainM. Fredrikson; G. Wik; Håkan Fischer; J. Andersson. Affective and attentive neural networks in humans: a PET study of Pavlovian conditioning. NeuroReport 7(1):97-101, 1995. PMID: 8742426. WOBIB: 99.
Thus, the functional organization of classical conditioning in humans involves autonomic, affective and attentive brain mechanismsM. Fredrikson; G. Wik; Håkan Fischer; J. Andersson. Affective and attentive neural networks in humans: a PET study of Pavlovian conditioning. NeuroReport 7(1):97-101, 1995. PMID: 8742426. WOBIB: 99.
Recent positron emission tomography (PET) studies have demonstrated areas of pain processing in the human brainL. J. Adler; F. E. Gyulai; D. J. Diehl; M. A. Mintun; P. M. Winter; L. L. Firestone. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesthesia & Analgesia 84(1):120-126, 1997. PMID: 8989012. WOBIB: 101.
Given the inhibitory effects of opioids on neuronal activity, we predicted that fentanyl's analgesic effects would be associated with suppression of pain-evoked responses in these distinct brain areasL. J. Adler; F. E. Gyulai; D. J. Diehl; M. A. Mintun; P. M. Winter; L. L. Firestone. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesthesia & Analgesia 84(1):120-126, 1997. PMID: 8989012. WOBIB: 101.
In contrast to our hypothesis, these data indicate that fentanyl analgesia involves augmentation of pain-evoked cerebral responses in certain areas, as well as both activation and inhibition in other brain regions unresponsive to pain stimulation aloneL. J. Adler; F. E. Gyulai; D. J. Diehl; M. A. Mintun; P. M. Winter; L. L. Firestone. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomography. Anesthesia & Analgesia 84(1):120-126, 1997. PMID: 8989012. WOBIB: 101.
We wished to determine whether there are differences in the spatial pattern and intensity of synaptic activity within the conscious human forebrain when different forms and intensities of innocuous and noxious thermal stimuli are experiencedK. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
The ipsilateral premotor cortex and thalamus, and the medial dorsal midbrain and cerebellar vermis, also showed significant rCBF increasesK. L. Casey; S. Minoshima; T. J. Morrow; R. A. Koeppe. Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain. Journal of Neurophysiology 76(1):571-81, 1996. PMID: 8836245. WOBIB: 102.
Thus, the stress induced by visual re-experience of a robbery is associated with altered activity in paralimbic and cortical brain regions of relevance for cognition and affectHåkan Fischer; G. Wik; M. Fredrikson. Functional neuroanatomy of robbery re-experience: affective memories studied with PET. NeuroReport 7(13):2081-6, 1996. PMID: 8930963. WOBIB: 103.
A graded relationship between symptom intensity and regional brain activity can thus be identified in obsessive-compulsive disorderPhilip K. McGuire; C. J. Bench; C. D. Frith; I. M. Marks; Richard S. J. Frackowiak; R. J. Dolan. Functional anatomy of obsessive-compulsive phenomena. British Journal of Psychiatry 164(4):459-468, 1994. PMID: 8038933. WOBIB: 104.
Positron emission tomography (PET) was used to identify brain regions associated with two component processes of episodic retrieval; those related to thinking back in subjective time (retrieval mode) and those related to actual recovery of stored information (ecphory)L. Nyberg; Endel Tulving; R. Habib; L. G. Nilsson; S. Kapur; S. Houle; Roberto Cabeza; A. R. McIntosh. Functional brain maps of retrieval mode and recovery of episodic information. NeuroReport 7(1):249-52, 1995. PMID: 8742463. WOBIB: 105.
In contrast to the common view that g reflects a broad sample of major cognitive functions, high-g tasks do not show diffuse recruitment of multiple brain regionsJohn Duncan; Rüdiger J. Seitz; J. Kolodny; D. Bor; H. Herzog; A. Ahmed; F. N. Newell; H. Emslie. A neural basis for general intelligence. Science 289(5478):457-60, 2000. PMID: 10903207. WOBIB: 110.
Positron-emission tomography (PET) has identified specific regions of the brain in which the rate of glucose metabolism declines progressively in patients with probable Alzheimer's diseaseEric M. Reiman; R. J. Caselli; L. S. Yun; K. Chen; D. Bandy; S. Minoshima; S. N. Thibodeau; D. Osborne. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. New England Journal of Medicine 334(12):752-8, 1996. PMID: 8592548. WOBIB: 112.
We used PET to investigate whether these same regions of the brain are affected in subjects homozygous for the epsilon 4 allele before the onset of cognitive impairmentEric M. Reiman; R. J. Caselli; L. S. Yun; K. Chen; D. Bandy; S. Minoshima; S. N. Thibodeau; D. Osborne. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. New England Journal of Medicine 334(12):752-8, 1996. PMID: 8592548. WOBIB: 112.
In late middle age, cognitively normal subjects who are homozygous for the epsilon 4 allele for apolipoprotein E have reduced glucose metabolism in the same regions of the brain as in patients with probable Alzheimer's diseaseEric M. Reiman; R. J. Caselli; L. S. Yun; K. Chen; D. Bandy; S. Minoshima; S. N. Thibodeau; D. Osborne. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. New England Journal of Medicine 334(12):752-8, 1996. PMID: 8592548. WOBIB: 112.
Many "higher-order" mental functions are subserved by large-scale neurocognitive networks comprising several spatially distributed and functionally specialized brain regionsE. T. Bullmore; S. Rabe-Hesketh; R. G. Morris; Steven C. R. Williams; L. Gregory; J. A. Gray; M. J. Brammer. Functional magnetic resonance image analysis of a large-scale neurocognitive network. NeuroImage 4(1):16-33, 1996. PMID: 9345494. WOBIB: 113.
This revealed a large functional distance (negative connectivity) between visual processing systems and all other brain regions in the space of the first PCE. T. Bullmore; S. Rabe-Hesketh; R. G. Morris; Steven C. R. Williams; L. Gregory; J. A. Gray; M. J. Brammer. Functional magnetic resonance image analysis of a large-scale neurocognitive network. NeuroImage 4(1):16-33, 1996. PMID: 9345494. WOBIB: 113.
Visual input analysis systems (extrastriate cortex and angular gyrus) were colocalized in the space of the first canonical variate (CV) and significantly separated from all other brain regionsE. T. Bullmore; S. Rabe-Hesketh; R. G. Morris; Steven C. R. Williams; L. Gregory; J. A. Gray; M. J. Brammer. Functional magnetic resonance image analysis of a large-scale neurocognitive network. NeuroImage 4(1):16-33, 1996. PMID: 9345494. WOBIB: 113.
Furthermore, the unilateral cingulate activation indicates that this forebrain area, thought to regulate emotions, contains an unexpectedly specific representation of painJ. D. Talbot; S. Marrett; Alan C. Evans; Ernst Meyer; M. C. Bushnell; G. H. Duncan. Multiple representations of pain in human cerebral cortex. Science 251(4999):1355-8, 1991. PMID: 2003220. BrainMap: 5. WOBIB: 114.
These results demonstrate genetically driven variation in the response of brain regions underlying human emotional behavior and suggest that differential excitability of the amygdala to emotional stimuli may contribute to the increased fear and anxiety typically associated with the short SLC6A4 alleleAhmad R. Hariri; Venkata S. Mattay; Alessandro Tessitore; Bhaskar Kolachana; Francesco Fera; David Goldman; Michael F. Egan; Daniel R. Weinberger. Serotonin transporter genetic variation and the response of the human amygdala. Science 297(5580):400-3, 2002. PMID: 12130784. DOI: 10.1126/science.1071829. WOBIB: 115.
Pain is a diverse sensory and emotional experience that likely involves activation of numerous regions of the brainR. C. Coghill; J. D. Talbot; A. C. Evans; Ernst Meyer; Albert Gjedde; M. C. Bushnell; G. H. Duncan. Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14(7):4095-108, 1994. PMID: 8027764. WOBIB: 117.
In order to better characterize the processing of pain within the human brain, activation produced by noxious stimuli was compared with that produced by robust innocuous stimuliR. C. Coghill; J. D. Talbot; A. C. Evans; Ernst Meyer; Albert Gjedde; M. C. Bushnell; G. H. Duncan. Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14(7):4095-108, 1994. PMID: 8027764. WOBIB: 117.
The purpose of the present study was to determine whether gender differences exist in the forebrain cerebral activation patterns of the brain during pain perceptionP. E. Paulson; S. Minoshima; T. J. Morrow; K. L. Casey. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76(1-2):223-9, 1998. PMID: 9696477. WOBIB: 118.
These pain-related differences in brain activation may be attributed to gender, perceived pain intensity, or to both factorsP. E. Paulson; S. Minoshima; T. J. Morrow; K. L. Casey. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain 76(1-2):223-9, 1998. PMID: 9696477. WOBIB: 118.
We used functional magnetic resonance imaging to examine brain activation during the performance of evaluative judgments as opposed to episodic and semantic memory retrievalStefan Zysset; Oswald Huber; Evelyn Ferstl; D. Y. von Cramon. The anterior frontomedian cortex and evaluative judgment: an fMRI study. NeuroImage 15(4):983-91, 2002. PMID: 11906238. DOI: 10.1006/nimg.2001.1008. WOBIB: 121.
Findings from functional imaging studies have shown activation of the brainstem during migraine without aura (MWOA) and activation of the hypothalamus during cluster headacheA. Bahra; M. S. Matharu; Christian Büchel; Richard S. J. Frackowiak; P. J. Goadsby. Brainstem activation specific to migraine headache. Lancet 357(9261):1016-7, 2001. PMID: 11293599. WOBIB: 122.
Our findings provide evidence that migraine involves the brainstem, and show several areas involved in cluster headachesA. Bahra; M. S. Matharu; Christian Büchel; Richard S. J. Frackowiak; P. J. Goadsby. Brainstem activation specific to migraine headache. Lancet 357(9261):1016-7, 2001. PMID: 11293599. WOBIB: 122.
To achieve this, we used functional magnetic resonance imaging (fMRI) to measure brain activity when human observers viewed freely dynamic natural scenes (a James Bond movie)Andreas Bartels; Semir Zeki. Functional brain mapping during free viewing of natural scenes. Human Brain Mapping 21(2):75-85, 2004. PMID: 14755595. DOI: 10.1002/hbm.10153. WOBIB: 123.
Our method thus opens a new way of brain mapping, which allows the localization of a multitude of brain areas based on a single experiment using uncontrolled, natural stimuliAndreas Bartels; Semir Zeki. Functional brain mapping during free viewing of natural scenes. Human Brain Mapping 21(2):75-85, 2004. PMID: 14755595. DOI: 10.1002/hbm.10153. WOBIB: 123.
We are of the opinion that stage-1 sleep represents the dreaming state of wakefulness, while rapid eye movement (REM) sleep reflects the dreaming state of the unaware, sleeping brainTroels W. Kjaer; Ian Law; Gordon Wiltschiotz; Olaf B. Paulson; Peter L. Madsen. Regional cerebral blood flow during light sleep--a H(2)(15)O-PET study. Journal of Sleep Research 11(3):201-207, 2002. PMID: 12220315. WOBIB: 124.
AIMS: Sedation induced by antihistamines is widely recognized to be caused by their penetration through the blood-brain-barrier and the consequent occupation of brain histamine H1-receptorsM. Tagawa; M. Kano; N. Okamura; M. Higuchi; M. Matsuda; Y. Mizuki; H. Arai; R. Iwata; T. Fujii; S. Komemushi; T. Ido; M. Itoh; H. Sasaki; T. Watanabe; K. Yanai. Neuroimaging of histamine H1-receptor occupancy in human brain by positron emission tomography (PET): a comparative study of ebastine, a second-generation antihistamine, and (+)-chlorpheniramine, a classical antihistamine. British Journal of Clinical Pharmacology 52(5):501-509, 2001. PMID: 11736858. WOBIB: 127.
The binding potential of doxepin (BP = Bmax/Kd) for available brain H1-receptors was imaged on a voxel-by-voxel basis through graphical analysisM. Tagawa; M. Kano; N. Okamura; M. Higuchi; M. Matsuda; Y. Mizuki; H. Arai; R. Iwata; T. Fujii; S. Komemushi; T. Ido; M. Itoh; H. Sasaki; T. Watanabe; K. Yanai. Neuroimaging of histamine H1-receptor occupancy in human brain by positron emission tomography (PET): a comparative study of ebastine, a second-generation antihistamine, and (+)-chlorpheniramine, a classical antihistamine. British Journal of Clinical Pharmacology 52(5):501-509, 2001. PMID: 11736858. WOBIB: 127.
CONCLUSIONS: Ebastine (10 mg orally) causes brain histamine H1-receptor occupation of approximately 10%, consistent with its lower incidence of sedative effect, whereas (+)-chlorpheniramine occupied about 50% of brain H1-receptors even at a low but sedative dose of 2 mg; occupancy of (+)-chlorpheniramine was correlated with plasma (+)-chlorpheniramine concentrationM. Tagawa; M. Kano; N. Okamura; M. Higuchi; M. Matsuda; Y. Mizuki; H. Arai; R. Iwata; T. Fujii; S. Komemushi; T. Ido; M. Itoh; H. Sasaki; T. Watanabe; K. Yanai. Neuroimaging of histamine H1-receptor occupancy in human brain by positron emission tomography (PET): a comparative study of ebastine, a second-generation antihistamine, and (+)-chlorpheniramine, a classical antihistamine. British Journal of Clinical Pharmacology 52(5):501-509, 2001. PMID: 11736858. WOBIB: 127.
It is not known which brain processes depend upon the successful integration of visual and proprioceptive information and are therefore impaired when these modalities disagreeDaniela Balslev; Finn Årup Nielsen; Olaf B. Paulson; Ian Law. Right Temporoparietal Cortex Activation during Visuo-proprioceptive Conflict. Cerebral Cortex 15(2):166-169, 2004. PMID: 15238438. DOI: 10.1093/cercor/bhh119. WOBIB: 128.
With fMRI in healthy subjects we compared brain activity across two conditions with similar visual and proprioceptive stimulation and similar task demands that differed by the congruence of movement showed by the two modalitiesDaniela Balslev; Finn Årup Nielsen; Olaf B. Paulson; Ian Law. Right Temporoparietal Cortex Activation during Visuo-proprioceptive Conflict. Cerebral Cortex 15(2):166-169, 2004. PMID: 15238438. DOI: 10.1093/cercor/bhh119. WOBIB: 128.
The effect of stimulus rate and its interaction with stimulus type on brain activity during reading was investigated using functional magnetic resonance imaging (fMRI)Andrea Mechelli; Karl J. Friston; Cathy J. Price. The effects of presentation rate during word and pseudoword reading: a comparison of PET and fMRI. Journal of Cognitive Neuroscience 12 Suppl 2():145-156, 2000. PMID: 11506654. DOI: 10.1162/089892900564000. FMRIDCID: 2-2000-11189. WOBIB: 129.
This (i) enabled the segregation of brain regions showing differential responses, (ii) identified the optimum experimental design parameters for maximizing sensitivity, and (iii) allowed us to evaluate further the sources of discrepancy between positron emission tomography (PET) and fMRI signalsAndrea Mechelli; Karl J. Friston; Cathy J. Price. The effects of presentation rate during word and pseudoword reading: a comparison of PET and fMRI. Journal of Cognitive Neuroscience 12 Suppl 2():145-156, 2000. PMID: 11506654. DOI: 10.1162/089892900564000. FMRIDCID: 2-2000-11189. WOBIB: 129.
The analysis specifically identified regions showing (i) an effect of stimulus rate on brain activity during reading; (ii) modulation of this effect by word type; and (iii) increased activity during reading relative to rest, but with no dependence on stimulus rateAndrea Mechelli; Karl J. Friston; Cathy J. Price. The effects of presentation rate during word and pseudoword reading: a comparison of PET and fMRI. Journal of Cognitive Neuroscience 12 Suppl 2():145-156, 2000. PMID: 11506654. DOI: 10.1162/089892900564000. FMRIDCID: 2-2000-11189. WOBIB: 129.
RESULTS: Brain regions in which activity was significantly correlated with tic occurrence in the group included medial and lateral premotor cortices, anterior cingulate cortex, dorsolateral-rostral prefrontal cortex, inferior parietal cortex, putamen, and caudate, as well as primary motor cortex, the Broca's area, superior temporal gyrus, insula, and claustrumE. Stern; D. A. Silbersweig; K. Y. Chee; Andrew Holmes; M. M. Robertson; M. Trimble; Christopher D. Frith; Richard S. J. Frackowiak; Raymond J. Dolan. A functional neuroanatomy of tics in Tourette syndrome. Archives of General Psychiatry 57(8):741-748, 2000. PMID: 10920461. FMRIDCID: . WOBIB: 130.
This study applied positron emission tomography (PET) to investigate the brain serotonin 2A (5HT2A) receptor, which could contribute to disturbances of appetite and behavior in ANGuido K. Frank; Walter H. Kaye; Carolyn C. Meltzer; Julie C. Price; Phil Greer; Claire McConaha; Kelli Skovira. Reduced 5-HT2A receptor binding after recovery from anorexia nervosa. Biological Psychiatry 52(9):896-906, 2002. PMID: 12399143. FMRIDCID: . WOBIB: 131.
Moreover, due to the large size of the sample voxelwise statistical testing was possible to objectively estimate which brain regions are more frequently compromised in neglect patients relative to patients without neglectHans-Otto Karnath; Monika Fruhmann Berger; Wilhelm Kuker; Chris Rorden. The Anatomy of Spatial Neglect based on Voxelwise Statistical Analysis: A Study of 140 Patients. Cerebral Cortex 14(10):1164-1172, 2004. PMID: 15142954. DOI: 10.1093/cercor/bhh076. FMRIDCID: . WOBIB: 133.
To understand spatial summation of pain processing in the brain, we investigated the cerebral evoked responses to non-painful and painful contact heat stimulation (70 degrees C/s fast onset; intensity 2,4,6, corresponding to the individual's non-, slight and moderate pain) comparing one (1s) vsAndrew C. N. Chen; David M. Niddam; Helen J. Crawford; Robert Oostenveld; Lars Arendt-Nielsen. Spatial summation of pain processing in the human brain as assessed by cerebral event related potentials. Neuroscience Letters 328(2):190-194, 2002. PMID: 12133585. FMRIDCID: . WOBIB: 136.
The positive correlations in mainly posterior brain regions indicate that normal aging is associated with an increase in metabolism after citalopram administration, whereas the negative correlations in mainly anterior brain regions indicate that normal aging is associated with a greater decrease in metabolismSara Goldberg; Gwenn S. Smith; Anna Barnes; Yilong Ma; Elisse Kramer; Kimberly Robeson; Margaret Kirshner; Bruce G. Pollock; David Eidelberg. Serotonin modulation of cerebral glucose metabolism in normal aging. Neurobiology of Aging 25(2):167-174, 2004. PMID: 14749134. FMRIDCID: . WOBIB: 138.
These results suggest different compensatory processes in anterior compared to posterior brain regions secondary to the age-related loss of serotonin innervationSara Goldberg; Gwenn S. Smith; Anna Barnes; Yilong Ma; Elisse Kramer; Kimberly Robeson; Margaret Kirshner; Bruce G. Pollock; David Eidelberg. Serotonin modulation of cerebral glucose metabolism in normal aging. Neurobiology of Aging 25(2):167-174, 2004. PMID: 14749134. FMRIDCID: . WOBIB: 138.
The striate cortex (V1) and the contiguous visual area (V2), which in the monkey brain feed both the homologous areas, were active in all 4 conditionsSemir Zeki; J. D. Watson; C. J. Lueck; Karl J. Friston; C. Kennard; Richard S. J. Frackowiak. A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience 11(3):641-649, 1991. PMID: 2002358. FMRIDCID: . WOBIB: 140.
This is based on an hypothesis-led analysis of the covariance structure of the blood flow maps and promises to be a powerful tool for inferring anatomical pathways in the normal human brainSemir Zeki; J. D. Watson; C. J. Lueck; Karl J. Friston; C. Kennard; Richard S. J. Frackowiak. A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience 11(3):641-649, 1991. PMID: 2002358. FMRIDCID: . WOBIB: 140.
Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representationsGreig I. de Zubicaray; Katie McMahon; Stephen J. Wilson; Santhi Muthiah. Brain activity during the encoding, retention, and retrieval of stimulus representations. Learning & Memory 8(5):243-251, 2001. PMID: 11584070. DOI: 10.1101/lm.40301. FMRIDCID: . WOBIB: 141.
Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuliGreig I. de Zubicaray; Katie McMahon; Stephen J. Wilson; Santhi Muthiah. Brain activity during the encoding, retention, and retrieval of stimulus representations. Learning & Memory 8(5):243-251, 2001. PMID: 11584070. DOI: 10.1101/lm.40301. FMRIDCID: . WOBIB: 141.
Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval)Greig I. de Zubicaray; Katie McMahon; Stephen J. Wilson; Santhi Muthiah. Brain activity during the encoding, retention, and retrieval of stimulus representations. Learning & Memory 8(5):243-251, 2001. PMID: 11584070. DOI: 10.1101/lm.40301. FMRIDCID: . WOBIB: 141.
The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memoryGreig I. de Zubicaray; Katie McMahon; Stephen J. Wilson; Santhi Muthiah. Brain activity during the encoding, retention, and retrieval of stimulus representations. Learning & Memory 8(5):243-251, 2001. PMID: 11584070. DOI: 10.1101/lm.40301. FMRIDCID: . WOBIB: 141.
Regional cerebral blood flow (rCBF) and blood oxygenation level-dependent (BOLD) contrasts represent different physiological measures of brain activationUlrich Schall; Patrick Johnston; Jim Lagopoulos; Markus Juptner; Walter Jentzen; Renate Thienel; Alexandra Dittmann-Balcar; Stefan Bender; Philip B. Ward. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20(2):1154-61, 2003. PMID: 14568484. DOI: 10.1016/S1053-8119(03)00338-0. FMRIDCID: . WOBIB: 144.
The present study aimed to compare two functional brain imaging techniques (functional magnetic resonance imaging versus [(15)O] positron emission tomography) when using Tower of London (TOL) problems as the activation taskUlrich Schall; Patrick Johnston; Jim Lagopoulos; Markus Juptner; Walter Jentzen; Renate Thienel; Alexandra Dittmann-Balcar; Stefan Bender; Philip B. Ward. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20(2):1154-61, 2003. PMID: 14568484. DOI: 10.1016/S1053-8119(03)00338-0. FMRIDCID: . WOBIB: 144.
These results imply consistency across the two neuroimaging modalities, particularly for the assessment of prefrontal brain function when using a parametric TOL adaptationUlrich Schall; Patrick Johnston; Jim Lagopoulos; Markus Juptner; Walter Jentzen; Renate Thienel; Alexandra Dittmann-Balcar; Stefan Bender; Philip B. Ward. Functional brain maps of Tower of London performance: a positron emission tomography and functional magnetic resonance imaging study. NeuroImage 20(2):1154-61, 2003. PMID: 14568484. DOI: 10.1016/S1053-8119(03)00338-0. FMRIDCID: . WOBIB: 144.
Previous functional brain imaging studies suggest that the ability to infer the intentions and mental states of others (social cognition) is mediated by medial prefrontal cortexT. F. Farrow; Y. Zheng; I. D. Wilkinson; S. A. Spence; J. F. Deakin; N. Tarrier; P. D. Griffiths; P. W. Woodruff. Investigating the functional anatomy of empathy and forgiveness. NeuroReport 12(11):2433-2438, 2001. PMID: 11496124. FMRIDCID: . WOBIB: 147.
We used functional MRI to detect brain regions engaged by judging others' emotional states and the forgivability of their crimesT. F. Farrow; Y. Zheng; I. D. Wilkinson; S. A. Spence; J. F. Deakin; N. Tarrier; P. D. Griffiths; P. W. Woodruff. Investigating the functional anatomy of empathy and forgiveness. NeuroReport 12(11):2433-2438, 2001. PMID: 11496124. FMRIDCID: . WOBIB: 147.
Empathic and forgivability judgements activate specific regions of the human brain, which we propose contribute to social cohesionT. F. Farrow; Y. Zheng; I. D. Wilkinson; S. A. Spence; J. F. Deakin; N. Tarrier; P. D. Griffiths; P. W. Woodruff. Investigating the functional anatomy of empathy and forgiveness. NeuroReport 12(11):2433-2438, 2001. PMID: 11496124. FMRIDCID: . WOBIB: 147.
We used event-related functional magnetic-resonance imaging (fMRI) to identify brain regions responsive to changes in visual, auditory and tactile stimuliJ. Downar; A. P. Crawley; D. J. Mikulis; K. D. Davis. A multimodal cortical network for the detection of changes in the sensory environment. Nature Neuroscience 3(3):277-283, 2000. PMID: 10700261. DOI: 10.1038/72991. FMRIDCID: . WOBIB: 148.
Personality traits are a variance of behavioral patterns among individuals and may reflect a variance of brain activity, but their neurobiological explanation is still a matter of debateMotoaki Sugiura; Ryuta Kawashima; Manabu Nakagawa; Ken Okada; Tachio Sato; Ryoi Goto; Kazunori Sato; Shuichi Ono; Torsten Schormann; Karl Zilles; Hiroshi Fukuda. Correlation between human personality and neural activity in cerebral cortex. NeuroImage 11(5 Pt 1):541-546, 2000. PMID: 10806039. DOI: 10.1006/nimg.2000.0564. FMRIDCID: . WOBIB: 149.
To explore the relationship between individual differences in negative affect (NA) and brain activity, we asked healthy subjects participating in positron-emission tomography scans to rate the extent to which they had experienced NA terms during the month before scanningDavid H. Zald; Dorothy L. Mattson; Jose V. Pardo. Brain activity in ventromedial prefrontal cortex correlates with individual differences in negative affect. Proc Natl Acad Sci U S A 99(4):2450-2454, 2002. PMID: 11842195. DOI: 10.1073/pnas.042457199. FMRIDCID: . WOBIB: 150.
Brain activations to matched and mismatched audio-visual inputs were contrasted with the combined response to both unimodal conditionsGemma A. Calvert; Ruth Campbell; Michael J. Brammer. Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology 10(11):649-657, 2000. PMID: 10837246. FMRIDCID: . WOBIB: 154.
It has been suggested that, in the clinical context of emotional blunting, there is a shift in the relative contribution of brain regions subserving cognitive and emotional processingKathryn M. Abel; Matthew P. G. Allin; Katarzyna Kucharska-Pietura; Anthony S. David; Chris Andrew; Steven C. R. Williams; Michael J. Brammer; Mary L. Phillips. Ketamine alters neural processing of facial emotion recognition in healthy men: an fMRI study. NeuroReport 14(3):387-391, 2003. PMID: 12634489. DOI: 10.1097/01.wnr.0000058031.29600.31. FMRIDCID: . WOBIB: 155.
Thus, we predicted that ketamine would produce reduced activity in limbic and visual brain regions involved in emotion processing, and increased activity in dorsal regions of the prefrontal cortex and cingulate gyrus, both associated with cognitive processing and, putatively, with emotion regulationKathryn M. Abel; Matthew P. G. Allin; Katarzyna Kucharska-Pietura; Anthony S. David; Chris Andrew; Steven C. R. Williams; Michael J. Brammer; Mary L. Phillips. Ketamine alters neural processing of facial emotion recognition in healthy men: an fMRI study. NeuroReport 14(3):387-391, 2003. PMID: 12634489. DOI: 10.1097/01.wnr.0000058031.29600.31. FMRIDCID: . WOBIB: 155.
These results suggest that sadness and happiness may be associated with similar brain regions but distinct sub-regions and neural circuitsMario Pelletier; Alain Bouthillier; Johanne Levesque; Serge Carrier; Claude Breault; Vincent Paquette; Boualem Mensour; Jean-Maxime Leroux; Gilles Beaudoin; Pierre Bourgouin; Mario Beauregard. Separate neural circuits for primary emotions? Brain activity during self-induced sadness and happiness in professional actors. NeuroReport 14(8):1111-1116, 2003. PMID: 12821792. DOI: 10.1097/01.wnr.0000075421.59944.69. FMRIDCID: . WOBIB: 157.
The results complement and extend previous data implicating these regions in olfactory processing, and indicate that a functional asymmetry exists in the human brain favouring the right orbitofrontal area in olfactionRobert J. Zatorre; Marilyn Jones-Gotman; Alan C. Evans; Ernst Meyer. Functional localization and lateralization of human olfactory cortex. Nature 360(6402):339-340, 1992. PMID: 1448149. DOI: 10.1038/360339a0. FMRIDCID: . WOBIB: 158.
Patients with amnesia have gross impairments of episodic memory while other kinds of memory remain intact, suggesting that a separable brain system underlies episodic memoryTim Shallice; Paul Fletcher; Chris D. Frith; Paul Grasby; Richard S. J. Frackowiak; Raymond J. Dolan. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368(6472):633-635, 1994. PMID: 8145849. DOI: 10.1038/368633a0. FMRIDCID: . WOBIB: 159.
A dual-task interference paradigm was used to isolate brain areas associated with acquisition, and a cueing paradigm to isolate the areas concerned with retrieval from verbal episodic memoryTim Shallice; Paul Fletcher; Chris D. Frith; Paul Grasby; Richard S. J. Frackowiak; Raymond J. Dolan. Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368(6472):633-635, 1994. PMID: 8145849. DOI: 10.1038/368633a0. FMRIDCID: . WOBIB: 159.
We examined the relation between extrastriatal dopamine D2 receptor binding in living human brain and the personality trait of novelty seeking that has been proposed to be related to dopaminergic function in the brainT. Suhara; F. Yasuno; Y. Sudo; M. Yamamoto; M. Inoue; Y. Okubo; K. Suzuki. Dopamine D2 receptors in the insular cortex and the personality trait of novelty seeking. NeuroImage 13(5):891-895, 2001. PMID: 11304084. DOI: 10.1006/nimg.2001.0761. FMRIDCID: . WOBIB: 160.
The dissociation between regions activated by olfactory exploration (sniffing) and regions activated by olfactory content (smell) shows a distinction in brain organization in terms of human olfactionNoam Sobel; V. Prabhakaran; John E. Desmond; Gary H. Glover; R. L. Goode; Edith V. Sullivan; John D. E. Gabrieli. Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392(6673):282-286, 1998. PMID: 9521322. DOI: 10.1038/32654. FMRIDCID: . WOBIB: 162.
A much debated question is whether sex differences exist in the functional organization of the brain for languageBennett A. Shaywitz; Sally E. Shaywitz; Kenneth R. Pugh; R. Todd Constable; Pawl Skudlawski; Robert K. Fulbright; Richard A. Bronen; Jack M. Fletcher; Donald P. Shankwiler; Leonard Katz; John C. Gore. Sex differences in the functional organization of the brain for language. Nature 373(6515):607-609, 1995. PMID: 7854416. DOI: 10.1038/373607a0. FMRIDCID: . WOBIB: 169.
During phonological tasks, brain activation in males is lateralized to the left inferior frontal gyrus regions; in females the pattern of activation is very different, engaging more diffuse neural systems that involve both the left and right inferior frontal gyrusBennett A. Shaywitz; Sally E. Shaywitz; Kenneth R. Pugh; R. Todd Constable; Pawl Skudlawski; Robert K. Fulbright; Richard A. Bronen; Jack M. Fletcher; Donald P. Shankwiler; Leonard Katz; John C. Gore. Sex differences in the functional organization of the brain for language. Nature 373(6515):607-609, 1995. PMID: 7854416. DOI: 10.1038/373607a0. FMRIDCID: . WOBIB: 169.
Our data provide clear evidence for a sex difference in the functional organization of the brain for language and indicate that these variations exist at the level of phonological processingBennett A. Shaywitz; Sally E. Shaywitz; Kenneth R. Pugh; R. Todd Constable; Pawl Skudlawski; Robert K. Fulbright; Richard A. Bronen; Jack M. Fletcher; Donald P. Shankwiler; Leonard Katz; John C. Gore. Sex differences in the functional organization of the brain for language. Nature 373(6515):607-609, 1995. PMID: 7854416. DOI: 10.1038/373607a0. FMRIDCID: . WOBIB: 169.
The present paper reports a functional neuroimaging study with positron emission tomography in which we studied brain activity in normal volunteers while they performed story comprehension tasks necessitating the attribution of mental statesPaul C. Fletcher; F Happe; Uta Frith; S. C. Baker; Raymond J. Dolan; Richard S. J. Frackowiak; Chris D. Frith. Other minds in the brain: a functional imaging study of "theory of mind" in story comprehension. Cognition 57(2):109-128, 1995. PMID: 8556839. DOI: 10.1016/0010-0277(95)00692-R. FMRIDCID: . WOBIB: 170.
The resultant brain activity was compared with that measured in two control tasks: "physical" stories which did not require this mental attribution, and passages of unlinked sentencesPaul C. Fletcher; F Happe; Uta Frith; S. C. Baker; Raymond J. Dolan; Richard S. J. Frackowiak; Chris D. Frith. Other minds in the brain: a functional imaging study of "theory of mind" in story comprehension. Cognition 57(2):109-128, 1995. PMID: 8556839. DOI: 10.1016/0010-0277(95)00692-R. FMRIDCID: . WOBIB: 170.
These surprisingly clear-cut findings are discussed in relation to previous studies of brain activation during story comprehensionPaul C. Fletcher; F Happe; Uta Frith; S. C. Baker; Raymond J. Dolan; Richard S. J. Frackowiak; Chris D. Frith. Other minds in the brain: a functional imaging study of "theory of mind" in story comprehension. Cognition 57(2):109-128, 1995. PMID: 8556839. DOI: 10.1016/0010-0277(95)00692-R. FMRIDCID: . WOBIB: 170.
The localisation of brain regions involved in normal attribution of mental states and contextual problem solving is feasible and may have implications for the neural basis of autismPaul C. Fletcher; F Happe; Uta Frith; S. C. Baker; Raymond J. Dolan; Richard S. J. Frackowiak; Chris D. Frith. Other minds in the brain: a functional imaging study of "theory of mind" in story comprehension. Cognition 57(2):109-128, 1995. PMID: 8556839. DOI: 10.1016/0010-0277(95)00692-R. FMRIDCID: . WOBIB: 170.
Functional magnetic resonance imaging (fMRI) was used to examine how the brain responds to temporal compression of speech and to determine whether the same regions are also involved in phonological processes associated with readingRussell A. Poldrack; Elise Temple; Athanassios Protopapas; Srikantan Nagarajan; Paula Tallal; Michael Merzenich; John D. E. Gabrieli. Relations Between the Neural Bases of Dynamic Auditory Processing and Phonological Processing: Evidence from fMRI. Journal of Cognitive Neuroscience 13(5):687-697, 2001. PMID: 11506664. FMRIDCID: 2-2001-111KR. WOBIB: 171.
In the brain mapping literature, it remains unsolved as to whether there are separate brain regions mediating the processing of syllables and phonemesWai Ting Soik; Zhen Jin; Paul Fletcher; Li Hai Tan. Distinct brain regions associated with syllable and phoneme. Human Brain Mapping 18(3):201-207, 2003. PMID: 12599278. DOI: 10.1002/hbm.10094. FMRIDCID: . WOBIB: 172.
CONCLUSIONS: While this study should be considered preliminary, it identifies regions of the brain that participate in happiness, sadness, and disgust, regions that distinguish between positive and negative emotions, and regions that depend on both the elicitor and valence of emotion or their interactionRichard D. Lane; Eric M. Reiman; Geoffrey L. Ahern; Gary E. Schwartz; Richard J. Davidson. Neuroanatomical Correlates of Happiness, Sadness, and Disgust. The American Journal of Psychiatry 154(7):926-933, 1997. PMID: 9210742. FMRIDCID: . WOBIB: 177.
The nascent field of neuroeconomics seeks to ground economic decisionmaking in the biological substrate of the brainAlan G. Sanfey; James K. Rilling; Jessica A. Aronson; Leigh E. Nystrom; Jonathan D. Cohen. The Neural Basis of Economic decision-Making in the Ultimatum Game. Science 300(5626):1755-1758, 2003. PMID: 12805551. DOI: 10.1126/science.1082976. FMRIDCID: . WOBIB: 179.
Unfair offers elicited activity in brain areas related to both emotion (anterior insula) and cognition (dorsolateral prefrontal cortex)Alan G. Sanfey; James K. Rilling; Jessica A. Aronson; Leigh E. Nystrom; Jonathan D. Cohen. The Neural Basis of Economic decision-Making in the Ultimatum Game. Science 300(5626):1755-1758, 2003. PMID: 12805551. DOI: 10.1126/science.1082976. FMRIDCID: . WOBIB: 179.
Magnetic resonance imaging (MRI) studies suggest that significant changes in gray matter density occur during adolescence because of brain maturationSophia Frangou; Xavier Chitins; Steven C. R. Williams. Mapping IQ and gray matter density in healty young people. NeuroImage 23(8):800-805, 2004. PMID: 15528081. DOI: 10.1016/j.neuroimage.2004.05.027. FMRIDCID: . WOBIB: 180.
These findings suggest that general intellectual ability in healthy young people is related to specific brain regions known to be involved in the executive control of attention, working memory, and response selectionSophia Frangou; Xavier Chitins; Steven C. R. Williams. Mapping IQ and gray matter density in healty young people. NeuroImage 23(8):800-805, 2004. PMID: 15528081. DOI: 10.1016/j.neuroimage.2004.05.027. FMRIDCID: . WOBIB: 180.
Two retrieval tasks, episodic and semantic, were crossed with episodic (old/new) and semantic (living/nonliving) properties of individual items to yield evidence of regional brain activity associated with task-related processes, item-related processes, and their interactionEmrah Düzel; Roberto Cabeza; Terence W. Picton; Andrew P. Yonelinas; Henning Scheich; Hans-Jochen Heinze; Endel Tulving. Task-related and item-related brain processes of memory retrieval. Proceedings of the National Academy of Science of the United States of America 96(4):1794-1799, 1999. PMID: 9990104. FMRIDCID: . WOBIB: 181.
The results provide converging hemodynamic and electrophysiological evidence for the distinction of task- and item-related processes, show that they map onto spatially and temporally distinct patterns of brain activity, and clarify the hemispheric encoding/retrieval asymmetry (HERA) model of prefrontal encoding and retrieval asymmetryEmrah Düzel; Roberto Cabeza; Terence W. Picton; Andrew P. Yonelinas; Henning Scheich; Hans-Jochen Heinze; Endel Tulving. Task-related and item-related brain processes of memory retrieval. Proceedings of the National Academy of Science of the United States of America 96(4):1794-1799, 1999. PMID: 9990104. FMRIDCID: . WOBIB: 181.
Parts of the limbic system associated with the midbrain dopamine system, including paralimbic cortex, are preferentially activated by decisions involving immediately available rewardsSamuel M. McClure; David I. Laibson; George Loewenstein; Jonathan D. Cohen. Separate Neural Systems Value Immediate and Delayed Monetary Rewards. Science 306(5695):503-507, 2004. PMID: 15486304. DOI: 10.1126/science.1100907. FMRIDCID: . WOBIB: 184.
USING functional magnetic resonance imaging (fMRI), we mapped brain activity in six normal volunteers during two silent verbal fluency tasks, one with a phonemic (letter) cue and one with a semantic (category) cueEraldo Paulesu; Ben Goldacre; Paola Scifo; Stefano F. Cappa; Maria Carla Gilardi; Isabella Castiglioni; Daniela Perani; Frruccio Fazio. Functional heterogeneity of left inferior frontal cortex as revealed by fMRI. NeuroReport 8(8):2011-2017, 1997. PMID: 9223094. FMRIDCID: . WOBIB: 185.
An association between the brain evoked response potentials and lying on the GKT suggests that deception may be associated with changes in other measures of brain activity such as regional blood flow that could be anatomically localized with event-related functional magnetic resonance imaging (fMRI)Daniel D. Langleben; L. Schroeder; J. A. Maldjian; R. C. Gur; S. McDonald; J. D. Ragland; C. P. O'Brien; A. R. Childress. Brain Activity during Simulated Deception: An Event-Related Functional Magnetic Resonance Study. NeuroImage 15(3):727-732, 2002. PMID: 11848716. DOI: 10.1006/nimg.2001.1003. FMRIDCID: . WOBIB: 186.

Text count

Bib -> Asymmetry | Author | ICA | NMF | Novelty | Statistics | SVD | Title | WOBIB ]
Roi -> Alphabetic | Hammers | Tzourio-Mazoyer | Svarer | Top | Functional areas | Brodmann areas ]
[ Brede Database ]
Automatically constructed by Brede Toolbox through brede_roi_roi2html, 2006-10-05T15:18:09