An evaluation of EEG scanner's dependence on the imaging technique, forward model computation method, and array dimensionality

From Brede Wiki
Jump to: navigation, search
Conference paper (help)
An evaluation of EEG scanner's dependence on the imaging technique, forward model computation method, and array dimensionality
Authors: Carsten Stahlhut, Hagai Thomas Attias, Arkadiusz Stopczynski, Michael Kai Petersen, Jakob Eg Larsen, Lars Kai Hansen
Citation: Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society  : 1538-1541. 2012
Editors:
Publisher: IEEE
Meeting: Define meeting
Database(s): Google Scholar cites PubMed (PMID/23366196)
DOI: 10.1109/EMBC.2012.6346235.
Link(s): http://orbit.dtu.dk/fedora/objects/orbit:119657/datastreams/file_0004986f-830e-46d5-b9e8-ccf239096fc9/content
Search
Web: DuckDuckGo Bing Google Yahoo!Google PDF
Article: Google Scholar PubMed
Restricted: DTU Digital Library
Services
Format: BibTeX

An evaluation of EEG scanner's dependence on the imaging technique, forward model computation method, and array dimensionality

[edit] Method

The forward relation:

<math>\mathbf{Y = AX + \mathcal{E}}</math>

where Y is the measured EEG signal, X is the sources and A the forward model.

<math>p(\mathbf{X} | \alpha)= \prod_{t= 1}^{N_t} \mathcal{N} ( \mathbf{x}_t | \mathbf{0} ,\alpha^{-1}\mathbf{L}^T\mathbf{L})</math>

Source estimates:

<math>\mathbf{\Sigma}_x = \alpha^{-1} \mathbf{K} - \alpha^{-1} \mathbf{K}\mathbf{A}^{T}

\mathbf{\Sigma}_y \mathbf{A}\mathbf{K}\alpha^{-1}</math>

<math>\boldsymbol{\mu}_t = \alpha^{-1}\mathbf{K}\mathbf{A}^{T}\mathbf{\Sigma}_y \mathbf{y}_t.</math>

Where the spatial smoothness is:

<math>\mathbf{K} = \mathbf{L}^{T} \mathbf{L}</math>
<math>\mathbf{\Sigma}^{-1}_y = \alpha^{-1} \mathbf{A} \mathbf{K} \mathbf{A}^{T} + \beta^{-1} \mathbf{\Sigma}_{\mathcal{E}}</math>

[edit] Related papers

  1. Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG
  2. Smartphones as pocketable labs: visions for mobile brain imaging and neurofeedback
Personal tools